Lohans lab trainees are underlined.

  1. Jeffs, M.A., and Lohans, C.T. Inhibiting the metallo-β-lactamases: Challenges and strategies to overcome bacterial β-lactam resistance. Future Med. Chem., 14, 1021-1025 (2022).
  2. Lang, P.A., Raj, R., Tumber, A., Lohans, C.T., Rabe, P., Robinson, C.V., Brem, J., and Schofield, C.J. Studies on enmetazobactam clarify mechanisms of widely used β-lactamase inhibitors. Proc. Natl. Acad. Sci. U.S.A., 119, e2117310119 (2022).
  3. Mora-Ochomogo, M., and Lohans, C.T. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med. Chem., 12, 1623-1639 (2021).
  4. Lucic, A., Hinchliffe, P., Malla, T.R., Tooke, C.L., Brem, J., Calvopiña, K., Lohans, C.T., Rabe, P., McDonough, M.A., Armistead, T., Orville, A.M., Spencer, J., and Schofield, C.J. Faropenem reacts with serine and metallo-β-lactamases to give multiple products. Eur. J. Med. Chem., 215, 113257 (2021).
  5. Cochrane, S.A., and Lohans, C.T. Breaking down the cell wall: Strategies for antibiotic discovery targeting bacterial transpeptidases. Eur. J. Med. Chem. 194, 112262 (2020).
  6. Aertker, K.M.J., Chan, H.T.H., Lohans, C.T., and Schofield, C.J. Analysis of β-lactone formation by clinically observed carbapenemases informs on a novel antibiotic resistance mechanism. J. Biol. Chem., 295, 16604-16613 (2020). co-corresponding
  7. de Munnik, M., Lohans, C.T., Langley, G.W., Bon, C., Brem, J., and Schofield, C.J. A fluorescence-based assay for screening β-lactams targeting the Mycobacterium tuberculosis transpeptidase LdtMt2. ChemBioChem, 21, 368-372 (2020). co-corresponding
  8. Liu, T., Abboud, M.I., Chowdhury, R., Tumber, A., Hardy, A.P., Lippl, K., Lohans, C.T., Pires, E., Wickens, J., McDonough, M.A., West, C.M., and Schofield, C.J. Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. J. Biol. Chem. 295, 16545-16561 (2020).
  9. Holt-Martyn, J.P., Chowdhury, R., Tumber, A., Yeh, T.-L., Abboud, M.I., Lippl, K., Lohans, C.T., Langley, G.W., Figg, W., McDonough, M.A., Pugh, C.W., Ratcliffe, R.J., and Schofield, C.J. Structure-activity relationship and crystallographic studies on 4-hydroxypyrimidine HIF prolyl hydroxylase domain inhibitors. ChemMedChem, 15, 270-273 (2020).
  10. Lohans, C.T., Freeman, E.I., van Groesen, E., Tooke, C.L., Hinchliffe, P., Spencer, J., Brem, J., and Schofield, C.J. Mechanistic insights into β-lactamase-catalysed carbapenem degradation through product characterisation. Sci. Rep. 9, 13608 (2019).
  11. de Munnik, M., Lohans, C.T., Lang, P.A., Langley, G.W., Malla, T.R., Tumber, A., Schofield, C.J., and Brem, J. Targeting the Mycobacterium tuberculosis transpeptidase LdtMt2 with cysteine-reactive inhibitors including ebselen. Chem. Commun. 55, 10214-10217 (2019).
  12. van Groesen, E.,Lohans, C.T.,‡† Brem, J., Aertker, K.M.J., Claridge, T.D.W., and Schofield, C.J. 19F-NMR monitoring of reversible protein post-translational modifications: class D β-lactamase carbamylation and inhibition. Chem. Eur. J. 25, 11837-11841 (2019). equal contributions co-corresponding
  13. Admiraal, S.J., Eyler, D.E., Baldwin, M.R., Brines, E.M., Lohans, C.T., Schofield, C.J., and O’Brien, P.J. Expansion of base excision repair compensates for a lack of DNA repair by oxidative dealkylation in budding yeast. J. Biol. Chem. 294, 13629-13637 (2019).
  14. Lohans, C.T., Chan, H.T.H., Malla, T., Kumar, K., Kamps, J.J.A.G., McArdle, D.J.B., van Groesen, E., de Munnik, M., Tooke, C.L., Spencer, J., Paton, R.S., Brem, J., and Schofield, C.J. Non-hydrolytic β-lactam antibiotic fragmentation by L,D-transpeptidases and serine β-lactamase cysteine variants. Angew. Chem. Int. Ed. 58, 1990-1994 (2019). equal contributions
  15. Thinnes, C.C., Lohans, C.T., Abboud, M.I., Yeh, T.-L., Tumber, A., Nowak, R.P., Attwood, M., Cockman, M.E., Oppermann, U., Loenarz, C., and Schofield, C.J. Selective inhibitors of a human prolyl hydroxylase (OGFOD1) involved in ribosomal decoding. Chem. Eur. J. 25, 2019-2024 (2019).
  16. Cahill, S.T., Tyrrell, J.M., Navratilova, I.H., Calvopiña, K., Robinson, S.W., Lohans, C.T., McDonough, M.A., Cain, R., Fishwick, C.W., Avison, M.B., Walsh, T.R., Schofield, C.J., and Brem, J. Studies on the inhibition of AmpC and other β-lactamases by cyclic boronates. Biochim. Biophys. Acta Gen. Subj. 1863, 742-748 (2019).
  17. Langley, G.W., Abboud, M.I., Lohans, C.T., and Schofield, C.J. Inhibition of a viral prolyl hydroxylase. Bioorg. Med. Chem. 27, 2405-2412 (2019).
  18. Shaikh, F., Zhao, Y., Alvarez, L., Iliopoulou, M., Lohans, C.T., Schofield, C.J., Padilla-Parra, S., Siu, S.W.I., Fry, E.E., Ren, J., and Stuart, D.I. Structure-based in silico screening identifies a potent ebolavirus inhibitor from a traditional Chinese medicine library. J. Med. Chem. 62, 2928-2937 (2019).
  19. Rabe, P., Kamps, J.J.A.G., Schofield, C.J.,‡† and Lohans, C.T.‡† Roles of 2-oxoglutarate oxygenases and isopenicillin N synthase in β-lactam biosynthesis. Nat. Prod. Rep. 35, 735-756 (2018). Featured on journal cover. equal contributionsco-corresponding
  20. Lohans, C.T., van Groesen, E., Kumar, K., Tooke, C.L., Spencer, J., Paton, R.S., Brem, J., and Schofield, C.J. A new mechanism for β-lactamases: class D enzymes degrade 1β-methyl carbapenems through lactone formation. Angew. Chem. Int. Ed. 130, 1296-1299 (2018).
  21. Lohans, C.T., Brem, J., and Schofield, C.J. New Delhi metallo-β-lactamase-1 catalyses avibactam and aztreonam hydrolysis. Antimicrob. Agents Chemother. 61, e01224-17 (2017) (doi: 10.1128/AAC.01224-17).
  22. Yeh, T.-L., Leissing, T.M., Abboud, M.I., Thinnes, C.C., Atasoylu, O., Holt-Martyn, J.P., Zhang, D., Tumber, A., Lippl, K., Lohans, C.T., Leung, I.K.H., Morcrette, H., Clifton, I.J., Claridge, T.D.W., Kawamura, A., Flashman, E., Lu, X., Ratcliffe, P.J., Chowdhury, R., Pugh, C.P., and Schofield, C.J. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem. Sci. 8,7651-7668 (2017).
  23. Calvopiña, K., Hinchliffe, P., Brem, J., Heesom, K.J., Johnson, S., Cain, R., Lohans, C.T., Fishwick, C.W.G., Schofield, C.J., Spencer, J., and Avison, M.B. Structural/mechanistic insights into the efficacy of non-classical β-lactamase inhibitors against extensively drug resistant Stenotrophomonas maltophilia clinical isolates. Mol. Microbiol. 106, 492-504 (2017).
  24. Lohans, C.T., Wang, D.Y., Jorgensen, C., Cahill, S.T., Clifton, I.J., McDonough, M.A., Oswin, H.P., Spencer, J., Domene, C., Claridge, T.D.W., Brem, J., and Schofield, C.J. 13C-Carbamylation as a mechanistic probe for the inhibition of class D β-lactamases by avibactam and halide ions. Org. Biomol. Chem. 15, 6024-6032 (2017).
  25. Li, G.-B., Yu, Z.-J., Liu, S., Huang, L.-Y., Yang, L.L., Lohans, C.T., and Yang, S.-Y. IFPTarget: a customized virtual target identification method based on protein-ligand interaction fingerprinting analyses. J. Chem. Inf. Model. 57, 1640-1651 (2017).
  26. Lohans, C.T., Wang, D.Y., Wang, J., Hamed, R.B., and Schofield, C.J. Crotonases: nature’s exceedingly convertible catalysts. ACS Catal. 7, 6587-6599 (2017). equal contributions
  27. Li, G.-B., Brem, J., Lesniak, R., Abboud, M.I., Lohans, C.T., Clifton, I.J., Yang, S.-Y., Jimenez-Castellanos, J.-C., Avison, M.B., Spencer, J., McDonough, M.A., and Schofield, C.J. Crystallographic analyses of isoquinoline complexes reveal a new mode of metallo-β-lactamase inhibition. Chem. Commun. 53, 5806-5809 (2017).
  28. Acedo, J.Z., Towle, K.M., Lohans, C.T., Miskolzie, M., McKay, R.T., Doerksen, T.A., Vederas, J.C., and Martin-Visscher, L.A. Identification and three-dimensional structure of carnobacteriocin XY, a class IIb bacteriocin produced by Carnobacteria. FEBS Lett. 591, 1349-1359 (2017).
  29. Zhang, Z., Smart, T.J., Choi, H., Hardy, F., Lohans, C.T., Abboud, M.I., Richardson, M.S.W., Paton, R.S., McDonough, M.A., and Schofield, C.J. Structural and stereoelectronic insights into oxygenase-catalyzed formation of ethylene from 2-oxoglutarate. Proc. Natl. Acad. Sci. U.S.A. 114, 4667-4672 (2017).
  30. Cahill, S.T., Cain, R., Wang, D.Y., Lohans, C.T., Wareham, D.W., Oswin, H.P., Mohammed, J., Spencer, J., Fishwick, C.W.G., McDonough, M.A., Schofield, C.J., and Brem, J. Cyclic boronates inhibit all classes of β-lactamase. Antimicrob. Agents Chemother. 61, e02260-16 (2017)(doi:10.1128/AAC.02260-16).
  31. Li, G.-B., Abboud, M.I., Brem, J., Someya, H., Lohans, C.T., Yang, S.-Y., Spencer, J., Wareham, D.W., McDonough, M.A., and Schofield, C.J. NMR-filtered virtual screening leads to non-metal chelating metallo-β-lactamase inhibitors. Chem. Sci. 8, 928-937 (2017).
  32. Towle, K.M., Lohans, C.T., Miskolzie, M., Acedo, J.Z., van Belkum, M.J., and Vederas, J.C. Solution structures of phenol-soluble modulins ⍺1, ⍺3 and β2, virulence factors from Staphylococcus aureus. Biochemistry 55, 4798-4806 (2016).
  33. Arbulu, S., Frantzen, C., Lohans, C.T., Cintas, L.M., Herranz, C., Holo, H., Diep, D.B., Vederas, J.C., and Hernández, P.E. Draft genome sequence of the bacteriocin-producing strain Enterococcus faecium M3K31, isolated from griffon vultures (Gyps fulvus subspecies fulvus). Genome Announc. 4,e00055-16 (2016).
  34. Acedo, J.Z., van Belkum, M.J., Lohans, C.T., Towle, K.M., Miskolzie, M., and Vederas, J.C. Nuclear magnetic resonance solution structures of lacticin Q and aureocin A53 reveal a structural motif conserved among leaderless bacteriocins with broad-spectrum activity. Biochemistry 55, 733-742 (2016).
  35. Arbulu, S., Lohans, C.T., van Belkum, M.J., Cintas, L.M., Herranz, C., Vederas, J.C., and Hernández, P.E. Solution structure of enterocin HF, an antilisterial bacteriocin produced by Enterococcus faecium M3K31. J. Agric. Food Chem. 63, 10689-10695 (2015)equal contributions
  36. Cochrane, S.A., Lohans, C.T., van Belkum, M.J., Bels, M.A., and Vederas, J.C. Studies on tridecaptin B1, a new tridecaptin analogue with activity against multidrug resistant Gram-negative bacteria. Org. Biomol. Chem. 13, 6073-6081 (2015). equal contributions
  37. van Belkum, M.J., Lohans, C.T., and Vederas, J.C. Draft genome sequences of Paenibacillus polymyxa NRRL B-30509 and Paenibacillus terrae NRRL B-30644, strains from a poultry environment that produce tridecaptin A and paenicidins. Genome Announc. 3, 1-2, e00372-15 (2015).
  38. Lohans, C.T., van Belkum, M.J., Li, J., and Vederas, J.C. Characterization of bacterial antimicrobial peptides active against Campylobacter jejuni. Can. J. Chem. 93, 381-388 (2015). 
  39. Acedo, J.Z., van Belkum, M.J., Lohans, C.T., McKay, R.T., Miskolzie, M., and Vederas, J.C. Solution structure of acidocin B, a circular bacteriocin produced by Lactobacillus acidophilus M46. Appl. Environ. Microbiol. 81, 2910-2918 (2015).
  40. Lin, X.B., Lohans, C.T., Duar, R., Zheng, J., Vederas, J.C., Walter, J., and Gänzle, M. Genetic determinants of reutericyclin biosynthesis in Lactobacillus reuteri. Appl. Environ. Microbiol. 81, 2032-2041 (2015).
  41. Lohans, C.T., Li, J.L., and Vederas, J.C. Structure and biosynthesis of carnolysin, a homologue of enterococcal cytolysin with D-amino acids. J. Am. Chem. Soc. 136, 13150-13153 (2014).
  42. Cochrane, S.A., Lohans, C.T., Brandelli, J.R., Mulvey, G., Armstrong, G.D., and Vederas, J.C. Synthesis and structure-activity relationship studies of N-terminal analogues of the antimicrobial peptide tridecaptin A1. J. Med. Chem.57, 1127-1131 (2014).
  43. Lohans, C.T., and Vederas, J.C. Structural characterization of thioether-bridged bacteriocins. J. Antibiot.67, 23-30 (2014).
  44. Tulini, F.L., Lohans, C.T., Bordon, K.C., Zheng, J., Arantes, E.C., Vederas, J.C., and De Martinis, E.C. Purification and characterization of antimicrobial peptides from fish isolate Carnobacterium maltaromaticum C2: carnobacteriocin X and carnolysins A1 and A2. Int. J. Food Microbiol. 173, 81-88 (2014).
  45. Lohans, C.T., van Belkum, M.J., Cochrane, S.A., Huang, Z., Sit, C.S., McMullen, L.M., and Vederas, J.C. Biochemical, structural, and genetic characterization of tridecaptin A1, an antagonist of Campylobacter jejuni. ChemBioChem 15, 243-249 (2014).
  46. Lohans, C.T., Towle, K.M., Miskolzie, M., McKay, R.T., van Belkum, M.J., McMullen, L.M., and Vederas, J.C. Solution structures of the linear leaderless bacteriocins enterocin 7A and 7B resemble carnocyclin A, a circular antimicrobial peptide. Biochemistry 52, 3987-3994 (2013). equal contributions
  47. Lohans, C.T., Huang, Z., van Belkum, M.J., Giroud, M., Sit, C.S., Steels, E.M., Zheng, J., Whittal, R.M., McMullen, L.M., and Vederas, J.C. Structural characterization of the highly cyclized lantibiotic paenicidin A via a partial desulfurization/reduction strategy. J. Am. Chem. Soc. 134, 19540-19543 (2012).
  48. Sit, C.S., Lohans, C.T., van Belkum, M.J., Campbell, C.D., Miskolzie, M., and Vederas, J.C. Substitution of a conserved disulfide in the type IIa bacteriocin, leucocin A, with L-leucine and L-serine residues: effects on activity and three-dimensional structure. ChemBioChem 13, 35-38 (2012).
  49. Lohans, C.T., and Vederas, J.C. Development of class IIa bacteriocins as therapeutic agents. Int. J. Microbiol. Volume 2012, Article ID 386410, doi:10.1155/2012/386410 (2012).
  50. Martin-Visscher, L.A., Yoganathan, S., Sit, C.S., Lohans, C.T., and Vederas, J.C. The activity of bacteriocins from Carnobacterium maltaromaticum UAL307 against Gram-negative bacteria in combination with EDTA treatment. FEMS Microbiol. Lett. 317, 152-159 (2011).